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-(2) The f-structure possesses the space group P2;/n
(Fig. 6(b)).

101 is not a space-group absence on either of these
arrangements. Intensity calculations, on the basis of
the same chain configuration as in the x-structure,
show that in structure (1) 101 has a low calculated
intensity requiring more than one quarter of the total
crystallites to have the f-structure in the rubbery
specimens, and more than one half in the cold drawn
specimens. This is not acceptable because such a large
proportion would affect the relative intensities of other
reflections as between the rubbery and the cold drawn
specimens, whereas in fact only 101 has been observed
to change intensity appreciably. In structure (2),
101 has a large calculated intensity, requiring only
1/20 of the crystallites to have the §-form; this would
not affect the other intensities appreciably: in this
proportion no other A0l (h odd) reflections would be
strong enough to be visible on the photographs. On
theoretical grounds the P2;/n space group is as likely
as P2;/a since the A and B molecules have identical
environments. The C=0 dipole distance is 3-16 A,
the same as in the «-structure, 3-17 A, so that the
packing of the chains is similar in this respect and the
P2;/n structure would be expected to have some
measure of stability. It has therefore been accepted
as the most likely for the g-form.

Specimens of pure PEA of moderate molecular
weight and of PEA lightly linked with hexamethylene
diisocyanate contain a third crystalline form (y) in
the unstretched state which, on cold drawing to give
an oriented fibre, is converted into the x-structure.
The y-form shows three very strong equatorial reflec-
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tions of combined intensity equal to the two strong
reflections, 110 and 020, of the x-structure. Two of
these reflections have the same spacings as 110 and
020, the third slightly greater than 110, as if the 110
reflection were split into two reflections of roughly
equal intensity. PES can also occur in a second crystal-
line form in the unoriented state.

The authors wish to express their thanks to Drs
D. R. Holmes and E. R. Howells, and Mr R. P. Pal-
mer, of these laboratories, for many helpful discus-
sions.
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Experimental Determination of Order Phenomena in Liquids
and Amorphous Solids

By H. MENDEL*

Koninklijke/Shell-Laboratorium, Amsterdam
(Shell Internationale Research Maatschappij N.V.)

(Received 20 March 1961)

A study has been made to determine with what accuracy information can be obtained about order
phenomena in liquids and amorphous solids by means of X-ray diffraction. It is shown that with
proper experimental conditions and a suitable evaluation of the X-ray intensities, dispensing with
sharpening of intensities and with the concept of point atoms, very reliable distribution curves
can be obtained, showing no spurious effects near the origin. This method has been tested with
good results for cyclohexane, benzene and vitreous silica.

Introduction

It was first shown by Debye (1915) and Ehrenfest
(1915), that a regular crystalline arrangement is not

* Present address: Unilever Research Laboratorium, Vlaar-
dingen.
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essential for the production of diffraction effects.
Debye (1925, 1927) later, in a paper on the diffraction
of X-rays by gases, introduced the idea of a probability
function, expressing the probability of the occurrence
of any given interatomic distance. Similar ideas were
put forward by Zernike & Prins (1927) in a very



114

important paper, laying the foundations for the inter-
pretation of diffraction patterns of liquids. They
showed how to apply Fourier’s integral theorem to the
determination of the distribution function of the atoms
from the observed diffraction pattern. Since then
practically all research on the structure of liquids has
been based on their method, which makes use of the
concept of point atoms throughout. In the case of
liquids containing more than one kind of atom, special
difficulties are encountered (see next section).

As X.ray diffraction measurements give information
only about the arrangement of electrons, the concept
of electron density is used throughout this paper. The
measured intensities are a direct function of this
quantity and therefore it is physically preferable to
deduce the distribution function, and to interpret it
quantitatively, directly in terms of electron density,
without a transformation to point atoms.

The distribution function as deduced by Zernike &
Prins is given by

OO
472 (r)— go] = (2r/) \ si(s) sin srds 1)
o
with:

o0 = average number of atoms per unit volume;

e(r) =radial atomic density;

i(s) = (I(s)/f2)—1 where I(s) is the scattered in-
tensity on an absolute scale and f is the
atomic scattering factor;

s = 4msin /A where 20 is the angle between
scattered and primary beam and 1 is the
wave length.

Equation (1) is strictly valid for monoatomic liquids.
Debye (1925, 1927) has extended the treatment to
diatomic molecules and Menke (1932) has considered
the general case of molecules of any form. Here,
however, it is necessary to know their structure,
which is often a serious drawback.

Another disadvantage of this method is the use of
‘sharpened’ intensities, e.g. I/f2. This often gives rise
to serious diffraction ripples in the Fourier transform
and may thus obscure the distribution function. In
order to diminish these diffraction effects, a conver-
gence factor (van Panthaleon van Eck et al., 1957,
1958), e.g. exp [—as?], is sometimes introduced. But
this means a transformation of the actual atoms to
Gaussian atoms and it is doubtful if much is to be
gained by doing this. For liquids containing more than
one kind of atom, an ‘average’ scattering curve
(Morgan & Warren, 1938; Warren et al., 1936; Brady,
1958) has to be introduced to obtain the sharpened
intensities. This is justified only if the ratio of the
different atomic scattering factors is the same for all
s-values which actually is not true.

A very stringent test for the correctness of the
distribution function is its slope at low values of
r (<1 A). Starting from the origin, the slope has to
be continuous and must be related in a specific manner
to the mean volume per atom and the average electron
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density. In the following sections it is shown how
distribution curves of liquids consisting of complex
molecules were obtained, showing the predicted slope
at the origin.

The distribution function

In view of the close connection between the diffracted
intensities in reciprocal space and the electron density
in direct space, the latter was taken as the starting
point in the following. If gz(p) is the electron density
at p and pr(p+r) at (p+r), then a distribution
function or(r) is defined by:

ort) -\ erPlos+nidaar, @)

T4

U
where S d4 is an integration with respect to the
A

components of r over the surface of a spherical shell

of radius |r| and origin at p, and \ dV is with respect
Jy

to the components of vector p over the whole volume
of the irradiated sample. The double integral has to
be calculated for fixed values of |r|, so in the second
integration it is the vector r+p that moves over the
spherical shell whose centre is at p, for all values of p.

If pn(p+r) and gm(p+r) are the electron densitiex
at p+r due to atom » and m, respectively, equation
(2) can be written:

or(r)=2X ( \ on(P)on(p+1)dAdTV

n CdFa
+23 \
nEm TV

* 4

0a(P)on(p+1)dAdV = oq(r)+ o(r). (3)

The first integral, summed over all atoms in the
irradiated volume, contains intra-atomic distances
while the second integral contains all interatomic
distances.

Therefore, two distinet terms can be distinguished:
ga(r) gives all intra-atomic distances and can be
calculated from the scattering curves; ¢(r) contains
structural information about the molecules (intra-
molecular distances) and the liquid itself (inter-
molecular distances).

It is convenient to introduce the average electron
density g. Then o(p)=g+ do(p) and at large enough
values of |r| the time-average value of p(p+r)=p.
From equation (3) o(r) can now be written:

otr) = | S gadav+\\ Ao dem+rdady @)
3 Va T
as cross products of g and Ag cancel out. By defining

outr) =\ doe)do(p+r)daar

ra
it is easily shown that

o(r)=4"""5 V+ ou(r) . 5)
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ou(r) is a measure of the departure of the mean
product of electron densities at a distance |r| apart
from the square of the average electron density.

The total coherent scattering from the sample I%(s)
is built up from the following components: the scat-
tering due to distances within the same atom, Icon.(s),
the scattering due to order phenomena Ix(s) and, the
zero-angle scattering Jo(s). All these intensities can be
calculated from the distribution functions:

«OC e o}
\ ar(r) ?g.l_s’f dr: Toon.(s) = \ Gulr) ?’_liff dr:
0 LM}
=\ on(r) Sv"is»r dr; Io(s)
o0
_ \ 47[)'252,[/5111 Sr dr )
J0

Knowledge of In(s) would make it possible to cal-
culate oa(r) by means of a Fourier transform, thus
giving experimental evidence of order phenomena:

7w ou(r) _ \ sIm(s) sin srds . (6)
2 r Jo

The intensity I (s) can be obtained from the fol-
lowing equation:

ICT(S):Icoh.(S)+IM(8)+10(8) . (7)

I4(s) is the total coherent experimental intensity
on an absolute scale and Icon.(s)+1o(s) can be cal-
culated. The only problem left is to bring the exper-
imental intensities to absolute scale. In the following
the absolute scale is normalized to one atom, namely
the scattered intensity of the irradiated sample in
absolute scale is divided by the number of atoms in
the sample.

Then equation (5) after substitution of equation (6)
becomes

g@ - \ sIu(s) sin srds+222r(N/V)E  (8)
T .
with §=(N/V)z where N/V =number of atoms per

unit volume and z=mean number of electrons per
atom. As In(s) is experimentally only accessible in a
limited s-range, the integration limits 0 — co in equa-
tion (8) have to be replaced by Smin. — Smax.. There
is no objection to this procedure, because at large
values of r, om(r) becomes zero, owing to the term
Ao(p+r) in the definition of om(r) (equation (4)).
Therefore, as no periodicity occurs in a liquid, the
corresponding value of Ix(s), which has to be ob-
served at low values of s, becomes zero and the lower
integration limit in equation (8) can be replaced by
Smin.. Also, at high values of s, corresponding with
r-values smaller than the atomic radii, In(s) will
become zero if the atoms do not overlap, all intra-
atomic contributions being given by con.(s).

Determination of Ip(s)

As shown in the previous section, it would be possible
to calculate directly o(r) if the In(s) were known.
Experiment, however, gives the total diffracted in-
tensity on an arbitrary scale, from which I (s) has
to be deduced. This total observed scattered intensity
on absolute scale, Ir(s) from the sample is:

Ip(s)=Tm(s)+ Lcon.(8) + Linc.(s) + In.(8) . (9)

I3(s): scattering due to order phenomena in the liquid ;

Leon.(8) + Tine.(s): the coherent and incoherent atomic
background scattering;

I1.(s): fluorescence radiation.

Ip(s) can be determined if all other quantities in
equation (9) are known on an absolute scale. Icon.(s)
and Jine.(s) can be calculated on this scale from the
chemical composition of the sample. I (s), the fluores-
cence radiation, is a parasitic radiation for which it
is extremely difficult to correct, because the sensitivity
of the photographic film varies with the wave length
and the tabulated fluorescence yields are inaccurate.
Its intensity may be comparable to Inm(s) and can
therefore on no account be neglected. Generally,
however, the wave length of the fluorescence radia-
tion differs considerably from the incident radiation
and thus the former can be eliminated by selective
absorption. In this case equation (9) becomes:

In(s)=1Iz(s) = [Lcon.(8) + Linc.(5)] - (10)

It now remains to convert the experimental intensity
I,(s)—after correction for polarization and absorption
—from an arbitrary scale into the absolute scale by
means of the scaling factor &« (Krogh-Moe, 1956;
Norman, 1957), namely Iz(s) = «l.(s). Once « is
known, calculations become straightforward.

If there is no overlapping of the electron shells of
atoms, interatomic distances » that approach zero do
not occur. Therefore

-0

r—>0

[Sven(p)em(pﬁ)dVJ

on substituting dA4 =d(4nr2) into equation (3) and
differentiating with respect to r gives

()] e

This condition, on differentiation of equation (8) with
respect to r, gives:

S sel(s)ds= —2m2(N V)5 . (11)

Substitution of equation (10) into equation (11) and
replacement of Ir(s) by xl.(s) gives, after rearrange-
ment:
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Swsz[(lcoh,(s) + Iine.(s)]ds —272(NV/ V)E2
0

X =

(12)

\. s21.(s)ds
«0

In practice the upper integration limit has to be
replaced by the highest experimental s-value. As
shown by Krogh-Moe (1956) and Norman (1957),
a rapid convergence of « is obtained at s-values which
are easily accessible experimentally, provided overlap
can be neglected. This latter condition is nearly always
fulfilled for atoms separated by the sum of their van
der Waals radii, whereas overlap can occur at smaller
interatomic distances, e.g. bond distances. If the
assumption is made that overlap can be described as
a superposition of spherical atoms, then its contribu-
tion to Ia(s) will be:

sin sr

Jov.(s)=Sw[S§ o (P )Qm(p+r)dAdVJ dr (13)

0 Ym+n
4
which expression can be evaluated for spherical atoms

m and » if the bond distances are known. In this case
the expression for the scaling factor becomes:

S [ Leon.(5) + Tne. (s)]ds — 22 22 4 ﬂ 2L,y (s)ds
0 V 0

& = =
508216(5) ds (14)

In the case of liquids containing more than one
kind of atom, it can easily be shown that:

Teon.( f 2(s) with f 2= 5‘ m, ; mp=mole fraction
of atoms p; fp= atomlc form factor of atom p;

Iine.(s) = Zp‘ mpIh (8); Ih(s)=incoherent scattering
olf atom p;

P
zZ = X mpzp; 2p=number of electrons of atom p.
1

Discussion of errors

The reliability of the experimental distribution curves
is governed by the accuracy of Im(s). As Iu(s) is
obtained as the difference between al.(s) and the sum
of the coherent and incoherent scattering, relatively
small errors in anyone of these can produce a relatively
large error in In(s). The most important errors are
the systematic ones, which will be considered first.
Systematic errors in the background arise from the
use of incorrect atomic scattering curves. In the cal-
culation of the scaling factor consistent results were
obtained only by using scattering curves calculated
from the most recent self-consistent-field data (Berg-
huis et al., 1955), including—if necessary—correction
for dispersion. Possible systematic errors in the ine
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coherent scattering can usually be neglected as their
contribution to the total background is small.

Systematic errors in the experimental intensities can
arise when the recorded film densities are converted
into intensities. This is usually done by taking as zero
level the non-exposed part of the film; but a serious
error is introduced when the zero level of the exposed
part of the film is different (e.g. fluorescence radiation,
extraneous scattering). If we suppose, for the sake of
the argument, that the difference in zero level is a
constant A, independent of s, then the true exper-
imental intensities I.(s) and the measured intensities
I7(s) are connected by the following formula

I (s)=I7(s)+ AP14-1

with P-1 and A-1 as polarization and absorption cor-
rection, respectively. This introduces an error d« in
the scaling factor of the measured intensities. The
expression for the distribution function now becomes:

(15)

S sIn(s) sin srds = S sI (s) sin srds

0
+ 0o g sI7(s) sin srds+ a4 \ SA-1P-1sinsrds. (16)

<0

The last-mentioned two integrals are given in Fig.1,
calculated for water. Their most characteristic feature
is a very high maximum at low values of » and a dif-
fraction ripple at higher r-values. The combined effects
of these two curves lead to a peak at r <1 A; therefore
the occurrence of such a peak may be an indication of
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Fig. 1. False details, superimposed on distribution curves as
a result of errors in zero level.
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a systematic error. The diffraction ripple with wave
length A~ 1-2 A is caused by the breaking-off effect
at s=5.

The only random errors considered are those in the
readings of the microphotometer diagram. If here an
error J is assumed, then the quadratic deviation u?
of the distribution function 7/2(om(r)/r) is:

&
uz = S [ 0]2s2 sin? srds;
Jo

at large values of 7: u? a~ }[xd]2s3.

This error is rather small and checks well with the
experimentally determined difference between distri-
bution curves based on different photographs of the
same sample.

Therefore a smooth continuous slope of the distribu-
tion curve near the origin coupled with the absence
of spurious diffraction ripples is a direct check on its
reliability, as this region of low r.values is very
sensitive towards systematic errors.

Experimental technique

The technique (van Panthaleon van Eck et al., 1957,
1958) adopted is a version of that of XKatzoff (1934)
and that of Morgan & Warren (1938). The specimen
is a liquid jet, centred in a cylindrical camera and
irradiated with a monochromatic X-ray beam. In order
to eliminate extraneous scattering, helium is circulated
through the camera and the film is protected against
fluorescence radiation by selective filters. For the
samples investigated—SiOz, CeHe, CsHio—XKel-F foils
(i.e. [-(C2F3Cl)-]n) were used. The liquid circulates in
a closed system making it possible to obtain long
exposure times with a limited amount of liquid
(~ 30 ml.). All photographs were taken with mono-
chromatized Cu K« radiation. The film densities were
converted by an automatic microphotometer into
intensities, which were corrected for polarization and
absorption to give the experimental intensities. The
diameter of the samples used was 0-3-0-4 mm.

Results
{a) Cyclohexane

The distribution curves for cyclohexane are given
in Fig. 2(a) and 2(b). The scaling factor o was cal-
culated for different values of the upper integration
limit s, with a sampling interval of As=1¢. In the
calculation of the background scattering, hydrogen

Table 1. Convergence of scaling factor for cyclohexane

X
0-302
0-300
0-300
0-305
0-307
0-307

IOt T
o o

o

Op (r)
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(o)}
~
%

(a)

N
Q
T T.T T T

™ T T T T T T

-120L
(b)

Fig. 2. (a) Distribution curve 47 op(r)/r of cyclohexane at 18° C.
(b) Distribution curve 47 ons(r)/r? of cyclohexanc at 18 °C.

atoms were included. As can be seen in Table 1 good
constancy is obtained at s-values >6%; thus the dis-
tribution curve obtained will be reliable. In Fig. 2(b)
the function o(r)/r2 is given, showing clearly that at
higher r-values the actual distribution becomes equal
to a statistical one.

(b) Benzene

The distribution curve for benzene is given in Fig. 3.
In scaling the experimental intensities, the sampling
interval As was taken as i, because of the sharpness
of the intensity peaks. In the benzene molecule,

Ty (1)

81
300,

200t

100

-100|
-2001

-300L

Fig. 3. Distribution curve of benzene at 18 °C.
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overlap of atoms separated by bonding distances will
occur, so the overlap correction has to be included
in calculating the scaling factor (equation (14)). As
the structure of the benzene molecule is well-known,
calculation of the intensities Jov.(s)—equation (13)—
is straightforward, being based on all intramolecular
atomic distances including hydrogen.

Table 2. Convergence of scaling factor for benzene

Sm &4 g
54 0-477 0-498
6 0-478 0-494
61 0-482 0-496
7 0-488 0-502
74 0-495 0-503
8 0-501 0-502

In Table 2, «; is the scaling factor deduced without
overlap correction, whereas the latter is included in
the calculation of 2. As can be seen, constancy of the
scaling factor is only obtained by including the overlap
correction. The distribution curve o(r)/r is calculated
without this correction; therefore, overlap is expected
to show up. This is confirmed by the slope of the curve
near the origin, indicating that right from the begin-
ning (r=0) the contribution to ¢(r)/r is different from
Zero.

(¢) Vitreous SiOg

The distribution curve for vitreous silica is given in
Fig. 4. The intensities were sampled with an interval
of As=}. Here again the overlap correction has to be
included in the calculation of the scaling factor in
order to obtain convergence. This correction was
calculated for the silicon-oxygen tetrahedron, based

oy (r
in M)
r
600
4001

200}

n
w
n
[l

-2001
-4001

-6001

-800L

Fig. 4. Distribution curve of vitreous SiO,.

on the known Si-O and O - -- O distances. The dis-
tribution curve oum(r)/r is again calculated without
correction for overlap, which therefore shows up near
the origin, where the curve is slightly convex. A de-
tailed quantitative interpretation of the first part of
this distribution function is given by Heemskerk
(1958).

Discussion

As shown above, the method described has made it
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possible to obtain distribution curves of liquids and
amorphous solids with the theoretically expected slope
near the origin. This is further demonstrated for
cyclohexane by calculating o(r)/r (Fig.5). As all
intra-atomic contributions have been subtracted, the
curve has to be zero at very low r-values and then
increase with a smiooth and continuous slope towards
higher »-values. That this is indeed realized is due to
the elimination of diffraction ripples and spurious
waves, which both exert their maximum influence in
this region. Diffraction ripples have been removed by
using a convergent Fourier series which was obtained

41 __G'(r)
-

600
500}
400k
300}
2001

100}

— . ! 1 )
o] 1 2 3 4q 5

Fig.5. Distribution curve 4mo(r)/r of cyclohexane at 18 °C.

from ‘unsharpened’ intensities (not divided by f2).
This is especially of advantage in polyatomic liquids,
as here division by f2 is not possible and an ‘effective’
atomic scattering curve has to be assumed. Spurious
waves do not occur because the proper atomic scatter-
ing curves were used and the scaling factor was
accurately determined, including—if necessary—an
overlap correction. The latter proved to be necessary
in our experiments with molecules containing small
bonding distances.

The distribution curves obtained can be interpreted
quantitatively in the usual way by a comparison of
experimental and calculated peak values. This is
shown in detail by Heemskerk (1958).

It is a pleasure to thank Mrs E. G. M. de Hertog-
Zaat and Mrs J. P. M. A, van Asselt-Ekkers for doing
most of the experimental work and for their help in
carrying out numerous calculations. I am further in-
debted to Dr J. Beintema for his stimulating criticism.
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The Direct Determination of Molecular Structure: The Crystal
Structure of Himbacine Hydrobromide at —150 °C

By J. FripricusoNs AND A. McL. MATHIESOX

Division of Chemical Physics, Chemical Research Laboratories, C.S.1.R.0., Melbouine, Australia

(Received 15 March 1961)

Himbacine hydrobromide monohydrate, C,,H;;0,N.HBr.H,0, crystallizes in the orthorhombic
system,
a=6678, b=12:670, c=26-317 A

measured at circa — 150 °C., the space group being P2,2,2, with Z =4. Starting with only the em-
pirical formula, the structure was solved by means of zero-layer projections and first-layer gener-
alized projections, image-seeking methods being discarded in favour of direct g, and Ap syntheses.
The absolute configuration was then established by reference to the anomalous dispersion of the
Br atom.
CH,—CH,
7 6

CH,s A 5CH, CH,H H

\* */ N xS
H-C C—H H *N- C—CH,
8at 4a\*/, H g . 1 6
CH,9 B aC ==C—Cz2 D 3s5CH,
e  x/ ] Ns &/
H - C——C: H H CH,—CH,
/9« Ba\ H
C1 C 3C*

The organic ion whose systematic name is trans-1-[2-(1,6-dimethyl piperidyl)]-2-[4-(1-0x0-3-
methyl-dodecahydronaphtho [2,3-c] furanyl)]-ethylene has 9 asymmetric centres (starred atoms).
The rings A, B and D are in the chair conformation. Between 4 and B there is a trans-junction,
between B and C a cis-junction. The piperidine substituent at 6 is axial, those at 1 and 2 equatorial;
the naphthofuran substituent at 3o is axial, those at 4 and 9a equatorial. Bond lengths and angles

are presented, those in the y-lactone system being discussed in more detail.
The experimental conditions of the analysis were selected to reduce the number of unobserved
terms to a minimum and the influence of this factor on the process of analysis is discussed.

When the X-ray analysis was initiated in May 1959,
himbacine was regarded from the chemical viewpoint
as the most important of the alkaloids isolated from
Himantandra (Galbulimima) species (Brown, Drum-
mond, Fogerty, Hughes, Pinhey, Ritchie & Taylor,
1956) in that it appeared to provide a structural key
to certain of the related alkaloids. Thus, a solution
of the structure and the elucidation of its stereo-

chemistry in detail could be of considerable assistance
in the correlation of the associated group of compounds
and in relating himbacine to other natural products,
especially if the absolute rather than the relative
configuration could be defined.

Drs E. Ritchie, W. C. Taylor and J. T. Pinhey, of
the Department of Chemistry in the University of
Sydney, who were investigating the structures of



